
Artificial 
Intelligence

Robot Programming with Lisp
4. Functional Programming:

Higher-order Functions, Map/Reduce, Lexical Scope

Gayane Kazhoyan

Institute for Artificial Intelligence
University of Bremen

8th of November, 2018



Artificial 
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);

• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure; ....

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
2



Artificial 
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure; ....

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
3



Artificial 
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;

• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure; ....

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
4



Artificial 
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure; ....

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
5



Artificial 
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;

• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure; ....

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
6



Artificial 
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure; ....

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
7



Artificial 
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure; ....

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
8



Artificial 
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure; ....
Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
9



Artificial 
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2018, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2018, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010 (new release planned in 2020),
purely functional, in contrast to all others in this list

• Racket: 1994, latest release in 2018, focused on writing
domain-specific programming languages

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
10



Artificial 
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2018, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2018, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010 (new release planned in 2020),
purely functional, in contrast to all others in this list

• Racket: 1994, latest release in 2018, focused on writing
domain-specific programming languages

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
11



Artificial 
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2018, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2018, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010 (new release planned in 2020),
purely functional, in contrast to all others in this list

• Racket: 1994, latest release in 2018, focused on writing
domain-specific programming languages

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
12



Artificial 
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2018, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2018, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010 (new release planned in 2020),
purely functional, in contrast to all others in this list

• Racket: 1994, latest release in 2018, focused on writing
domain-specific programming languages

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
13



Artificial 
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2018, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2018, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010 (new release planned in 2020),
purely functional, in contrast to all others in this list

• Racket: 1994, latest release in 2018, focused on writing
domain-specific programming languages

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
14



Artificial 
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2018, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2018, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2017, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2018, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
15



Artificial 
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2018, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2018, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2017, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2018, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
16



Artificial 
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2018, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2018, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2017, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2018, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
17



Artificial 
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2018, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2018, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2017, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2018, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
18



Artificial 
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2018, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2018, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2017, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2018, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.
Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
19



Artificial 
Intelligence

Contents

Background

Concepts
Functions Basics
Higher-order Functions
Anonymous Functions
Currying
Mapping and Reducing
Lexical Scope

Organizational

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
20



Artificial 
Intelligence

Defining a Function

Signature
CL-USER>
(defun my-cool-function-name (arg-1 arg-2 arg-3 arg-4)
"This function combines its 4 input arguments into a list

and returns it."
(list arg-1 arg-2 arg-3 arg-4))

Optional Arguments
CL-USER> (defun optional-arguments (arg-1 arg-2 &optional arg-3 arg-4)

(list arg-1 arg-2 arg-3 arg-4))
CL-USER> (optional-arguments 1 2 3 4)
(1 2 3 4)
CL-USER> (optional-arguments 1 2 3)
(1 2 3 NIL)
CL-USER> (optional-arguments 304)
invalid number of arguments: 1

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
21



Artificial 
Intelligence

Defining a Function [2]

Key Arguments
CL-USER>
(defun specific-optional (arg-1 arg-2 &key arg-3 arg-4)
"This function demonstrates how to pass a value to

a specific optional argument."
(list arg-1 arg-2 arg-3 arg-4))

SPECIFIC-OPTIONAL

CL-USER> (specific-optional 1 2 3 4)
unknown &KEY argument: 3

CL-USER> (specific-optional 1 2 :arg-4 4)
(1 2 NIL 4)

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
22



Artificial 
Intelligence

Defining a Function [3]

Unlimited Number of Arguments
CL-USER> (defun unlimited-args (arg-1 &rest args)

(format t "Type of args is ~a.~%" (type-of args))
(cons arg-1 args))

UNLIMITED-ARGS

CL-USER> (unlimited-args 1 2 3 4)
Type of args is CONS.
(1 2 3 4)

CL-USER> (unlimited-args 1)
Type of args is NULL.
(1)

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
23



Artificial 
Intelligence

Multiple Values

list vs. values
CL-USER> (defvar *some-list* (list 1 2 3))

*SOME-LIST*
CL-USER> *some-list*
(1 2 3)
CL-USER> (defvar *values?* (values 1 2 3))

*VALUES?*
CL-USER> *values?*
1
CL-USER> (values 1 2 3)
1
2
3
CL-USER> *
1
CL-USER> //
(1 2 3)

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
24



Artificial 
Intelligence

Multiple Values [2]

Returning Multiple Values!
CL-USER> (defvar *db* '((Anna 1987) (Bob 1899) (Charlie 1980)))

(defun name-and-birth-year (id)
(values (first (nth (- id 1) *db*))

(second (nth (- id 1) *db*))))
NAME-AND-BIRTH-YEAR

CL-USER> (name-and-birth-year 2)
BOB
1899

CL-USER> (multiple-value-bind (name year) (name-and-birth-year 2)
(format t "~a was born in ~a.~%" name year))

BOB was born in 1899.
NIL

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
25



Artificial 
Intelligence

Function Designators
Similar to C pointers or Java references

Designator of a Function
CL-USER> (describe '+)
COMMON-LISP:+
[symbol]

+ names a special variable:
+ names a compiled function:
CL-USER> #'+
CL-USER> (symbol-function '+)
#<FUNCTION +>
CL-USER> (describe #'+)
#<FUNCTION +>
[compiled function]

Lambda-list: (&REST NUMBERS)
Declared type: (FUNCTION (&REST NUMBER) (VALUES NUMBER &OPTIONAL))
Derived type: (FUNCTION (&REST T) (VALUES NUMBER &OPTIONAL))
Documentation: ...
Source file: SYS:SRC;CODE;NUMBERS.LISP

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
26



Artificial 
Intelligence

Contents

Background

Concepts
Functions Basics
Higher-order Functions
Anonymous Functions
Currying
Mapping and Reducing
Lexical Scope

Organizational

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
27



Artificial 
Intelligence

Higher-order Functions

Function as Argument
CL-USER> (funcall #'+ 1 2 3)
CL-USER> (apply #'+ '(1 2 3))
6
CL-USER> (defun transform-1 (num) (/ 1.0 num))
TRANSFORM-1
CL-USER> (defun transform-2 (num) (sqrt num))
TRANSFORM-2
CL-USER> (defun print-transformed (a-number a-function)

(format t "~a transformed with ~a becomes ~a.~%"
a-number a-function (funcall a-function a-number)))

PRINT-TRANSFORMED
CL-USER> (print-transformed 4 #'transform-1)
4 transformed with #<FUNCTION TRANSFORM-1> becomes 0.25.
CL-USER> (print-transformed 4 #'transform-2)
4 transformed with #<FUNCTION TRANSFORM-2> becomes 2.0.
CL-USER> (sort '(2 6 3 7 1 5) #'>)
(7 6 5 3 2 1)

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
28



Artificial 
Intelligence

Higher-order Functions [2]

Function as Return Value
CL-USER> (defun give-me-some-function ()

(case (random 5)
(0 #'+)
(1 #'-)
(2 #'*)
(3 #'/)
(4 #'values)))

GIVE-ME-SOME-FUNCTION

CL-USER> (give-me-some-function)
#<FUNCTION ->

CL-USER> (funcall (give-me-some-function) 10 5)
5

CL-USER> (funcall (give-me-some-function) 10 5)
2

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
29



Artificial 
Intelligence

Contents

Background

Concepts
Functions Basics
Higher-order Functions
Anonymous Functions
Currying
Mapping and Reducing
Lexical Scope

Organizational

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
30



Artificial 
Intelligence

Anonymous Functions

lambda
CL-USER> (sort '((1 2 3 4) (3 4) (6 3 6)) #'>)
The value (3 4) is not of type NUMBER.
CL-USER> (sort '((1 2 3 4) (3 4) (6 3 6)) #'> :key #'car)
((6 3 6) (3 4) (1 2 3 4))
CL-USER> (sort '((1 2 3 4) (3 4) (6 3 6))

(lambda (x y)
(> (length x) (length y))))

((1 2 3 4) (6 3 6) (3 4))

CL-USER> (defun random-generator-a-to-b (a b)
(lambda () (+ (random (- b a)) a)))

RANDOM-GENERATOR-A-TO-B
CL-USER> (random-generator-a-to-b 5 10)
#<CLOSURE (LAMBDA () :IN RANDOM-GENERATOR-A-TO-B) {100D31F90B}>
CL-USER> (funcall (random-generator-a-to-b 5 10))
9

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
31



Artificial 
Intelligence

Contents

Background

Concepts
Functions Basics
Higher-order Functions
Anonymous Functions
Currying
Mapping and Reducing
Lexical Scope

Organizational

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
32



Artificial 
Intelligence

Currying

Back to Generators
CL-USER> (let ((x^10-lambda (lambda (x) (expt x 10))))

(dolist (elem '(2 3))
(format t "~a^10 = ~a~%" elem (funcall x^10-lambda elem))))

2^10 = 1024
3^10 = 59049
;; The following only works with roslisp_repl. Otherwise do first:
;; (pushnew #p"/.../alexandria" asdf:*central-registry* :test #'equal)
CL-USER> (asdf:load-system :alexandria)
CL-USER> (dolist (elem '(2 3))

(format t "~a^10 = ~a~%"
elem (funcall (alexandria:curry #'expt 10) elem)))

2^10 = 100
3^10 = 1000
CL-USER> (dolist (elem '(2 3))

(format t "~a^10 = ~a~%"
elem (funcall (alexandria:rcurry #'expt 10) elem)))

2^10 = 1024
3^10 = 59049
Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
33



Artificial 
Intelligence

Contents

Background

Concepts
Functions Basics
Higher-order Functions
Anonymous Functions
Currying
Mapping and Reducing
Lexical Scope

Organizational

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
34



Artificial 
Intelligence

Mapping

Mapping in functional programming is the process of
applying a function to all members of a list, returning a list of results.

Supported in most functional programming languages and, in addition

• C++ (STL)
• JavaScript 1.6+
• Matlab

• Java 8+
• PHP 4.0+
• Perl

• Python 1.0+
• Ruby
• Prolog

• C# 3.0+
• Mathematica
• Smalltalk, ...

In some of the languages listed the implementation is limited and not
elegant.

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
35



Artificial 
Intelligence

Mapping [2]
mapcar is the standard mapping function in Common Lisp.

mapcar function list-1 &rest more-lists ⇒ result-list

Apply function to elements of list-1. Return list of function return values.

mapcar
CL-USER> (mapcar #'abs '(-2 6 -24 4.6 -0.2d0 -1/5))
(2 6 24 4.6 0.2d0 1/5)
CL-USER> (mapcar #'list '(1 2 3 4))
((1) (2) (3) (4))
CL-USER> (mapcar #'second '((1 2 3) (a b c) (10/3 20/3 30/3)))
?
CL-USER> (mapcar #'+ '(1 2 3 4 5) '(10 20 30 40))
?
CL-USER> (mapcar #'cons '(a b c) '(1 2 3))
?
CL-USER> (mapcar (lambda (x) (expt 10 x)) '(2 3 4))
?
Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
36



Artificial 
Intelligence

Mapping [2]
mapcar is the standard mapping function in Common Lisp.

mapcar function list-1 &rest more-lists ⇒ result-list

Apply function to elements of list-1. Return list of function return values.

mapcar
CL-USER> (mapcar #'abs '(-2 6 -24 4.6 -0.2d0 -1/5))
(2 6 24 4.6 0.2d0 1/5)
CL-USER> (mapcar #'list '(1 2 3 4))
((1) (2) (3) (4))
CL-USER> (mapcar #'second '((1 2 3) (a b c) (10/3 20/3 30/3)))
(2 B 20/3)
CL-USER> (mapcar #'+ '(1 2 3 4 5) '(10 20 30 40))
(11 22 33 44)
CL-USER> (mapcar #'cons '(a b c) '(1 2 3))
((A . 1) (B . 2) (C . 3))
CL-USER> (mapcar (lambda (x) (expt 10 x)) '(2 3 4))
(100 1000 10000)
Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
37



Artificial 
Intelligence

Mapping [3]
mapc is mostly used for functions with side effects.

mapc function list-1 &rest more-lists ⇒ list-1
mapc
CL-USER> (mapc #'set '(*a* *b* *c*) '(1 2 3))
(*A* *B* *C*)
CL-USER> *c*
3
CL-USER> (mapc #'format '(t t) '("hello, " "world~%"))
hello, world
(T T)
CL-USER> (mapc (alexandria:curry #'format t) '("hello, " "world~%"))
hello, world
("hello~%" "world~%")
CL-USER> (mapc (alexandria:curry #'format t "~a ") '(1 2 3 4))
1 2 3 4
(1 2 3 4)
CL-USER> (let (temp)

(mapc (lambda (x) (push x temp)) '(1 2 3))
temp)Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
38



Artificial 
Intelligence

Mapping [4]
mapcan combines the results using nconc instead of list.

mapcan function list-1 &rest more-lists ⇒ concatenated-results
If the results are not lists, the consequences are undefined.

nconc vs list
CL-USER> (list '(1 2) nil '(3 45) '(4 8) nil)
((1 2) NIL (3 45) (4 8) NIL)
CL-USER> (nconc '(1 2) nil '(3 45) '(4 8) nil)
(1 2 3 45 4 8)
CL-USER> (nconc '(1 2) nil 3 '(45) '(4 8) nil)
; Evaluation aborted on #<TYPE-ERROR expected-type: LIST datum: 1>.
CL-USER> (let ((first-list (list 1 2 3))

(second-list (list 4 5)))
(values (nconc first-list second-list)

first-list
second-list))

(1 2 3 4 5)
(1 2 3 4 5)
(4 5)

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
39



Artificial 
Intelligence

Mapping [4]
mapcan combines the results using nconc instead of list.

mapcan function list-1 &rest more-lists ⇒ concatenated-results
If the results are not lists, the consequences are undefined.

mapcan
CL-USER> (mapcar #'list '(1 2 3))
((1) (2) (3))
CL-USER> (mapcan #'list '(1 2 3))
(1 2 3)
CL-USER> (mapcan #'alexandria:iota '(1 2 3))
(0 0 1 0 1 2)
CL-USER> (mapcan (lambda (x)

(when (numberp x)
(list x)))

'(4 n 1/3 ":)"))
(4 1/3)

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
40



Artificial 
Intelligence

Mapping [5]
maplist, mapl and mapcon operate on sublists of the input list.

maplist function list-1 &rest more-lists ⇒ result-list
maplist
CL-USER> (mapcar #'identity '(1 2 3))
(1 2 3)
CL-USER> (maplist #'identity '(1 2 3))
((1 2 3) (2 3) (3))
CL-USER> (maplist (lambda (x)

(when (>= (length x) 2)
(- (second x) (first x))))

'(2 2 3 3 3 2 3 2 3 2 2 3))
. . . . . .

. . . . . .
(0 1 0 0 -1 1 -1 1 -1 0 1 NIL)

. . . .
. . . .

. . .
CL-USER> (maplist (lambda (a-list) (apply #'* a-list)) '(4 3 2 1))

(24 6 2 1)Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
41



Artificial 
Intelligence

Mapping [5]
maplist, mapl and mapcon operate on sublists of the input list.

mapl function list-1 &rest more-lists ⇒ list-1
mapcon function list-1 &rest more-lists ⇒ concatenated-results

mapl
CL-USER> (let (temp)

(mapl (lambda (x) (push x temp)) '(1 2 3))
temp)

((3) (2 3) (1 2 3))

mapcon
CL-USER> (mapcon #'reverse '(4 3 2 1))
(1 2 3 4 1 2 3 1 2 1)
CL-USER> (mapcon #'identity '(1 2 3 4))
; Evaluation aborted on NIL.

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
42



Artificial 
Intelligence

Mapping [6]

map is a generalization of mapcar for sequences (lists and vectors).

map result-type function first-sequence &rest more-sequences ⇒ result

map
CL-USER> (mapcar #'+ #(1 2 3) #(10 20 30))
The value #(1 2 3) is not of type LIST.
CL-USER> (map 'vector #'+ #(1 2 3) #(10 20 30))
#(11 22 33)
CL-USER> (map 'list #'+ '(1 2 3) '(10 20 30))
(11 22 33)
CL-USER> (map 'list #'identity '(#\h #\e #\l #\l #\o))
(#\h #\e #\l #\l #\o)
CL-USER> (map 'string #'identity '(#\h #\e #\l #\l #\o))
"hello"

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
43



Artificial 
Intelligence

Reduction
reduce function sequence &key key from-end start end initial-value ⇒ result

Uses a binary operation, function, to combine the elements of sequence.

reduce
CL-USER> (reduce (lambda (x y) (list x y)) '(1 2 3 4))
(((1 2) 3) 4)
CL-USER> (reduce (lambda (x y) (format t "~a ~a~%" x y)) '(1 2 3 4))
1 2
NIL 3
NIL 4
CL-USER> (reduce #'+ '()) ; ?
CL-USER> (reduce #'cons '(1 2 3 nil))
?
CL-USER> (reduce #'cons '(1 2 3) :from-end t :initial-value nil)
?
CL-USER> (reduce #'+ '((1 2) (3 4) (5 6))

:key #'first :start 1 :initial-value -10)
?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
44



Artificial 
Intelligence

Reduction
reduce function sequence &key key from-end start end initial-value ⇒ result

Uses a binary operation, function, to combine the elements of sequence.

reduce
CL-USER> (reduce (lambda (x y) (list x y)) '(1 2 3 4))
(((1 2) 3) 4)
CL-USER> (reduce (lambda (x y) (format t "~a ~a~%" x y)) '(1 2 3 4))
1 2
NIL 3
NIL 4
CL-USER> (reduce #'+ '()) ; ?
CL-USER> (reduce #'cons '(1 2 3 nil))
(((1 . 2) . 3))
CL-USER> (reduce #'cons '(1 2 3) :from-end t :initial-value nil)
(1 2 3)
CL-USER> (reduce #'+ '((1 2) (3 4) (5 6))

:key #'first :start 1 :initial-value -10)
-2 ; = -10 + 3 + 5

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
45



Artificial 
Intelligence

MapReduce

Google’s MapReduce is a programming paradigm used mostly in huge
databases for distributed processing. It was originally used for updating
the index of the WWW in their search engine.

Currently supported by AWS, MongoDB, ...

Inspired by the map and reduce paradigms of functional programming.

https://en.wikipedia.org/wiki/MapReduce

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
46

https://en.wikipedia.org/wiki/MapReduce


Artificial 
Intelligence

MapReduce [2]
Example

Task: calculate at which time interval the number of travelers on the
tram is the highest (intervals are “early morning”, “late morning”, ...)
Database: per interval hourly entries on number of travelers
(e.g. db_early_morning: 6:00 → Tram6 → 100, 7:00 → Tram8 → 120)
Map step: per DB, go through tram lines and sum up travelers:

• DB1 early morning: (Tram6 → 2000) (Tram8 → 1000) ...
• DB6 late night: (Tram6 → 200) (Tram4 → 500) ...

Reduce: calculate maximum of all databases for each tram line:
Tram6 → 3000 (late morning)
Tram8 → 1300 (early evening)
...
Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
47



Artificial 
Intelligence

Contents

Background

Concepts
Functions Basics
Higher-order Functions
Anonymous Functions
Currying
Mapping and Reducing
Lexical Scope

Organizational

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
48



Artificial 
Intelligence

The let Environment

let
CL-USER> (let ((a 1)

(b 2))
(values a b))

1
2
CL-USER> (values a b)
The variable A is unbound.

CL-USER> (defvar some-var 'global)
(let ((some-var 'outer))

(let ((some-var 'inter))
(format t "some-var inner: ~a~%" some-var))

(format t "some-var outer: ~a~%" some-var))
(format t "global-var: ~a~%" some-var)

?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
49



Artificial 
Intelligence

The let Environment

let
CL-USER> (let ((a 1)

(b 2))
(values a b))

1
2
CL-USER> (values a b)
The variable A is unbound.

CL-USER> (defvar some-var 'global)
(let ((some-var 'outer))

(let ((some-var 'inter))
(format t "some-var inner: ~a~%" some-var))

(format t "some-var outer: ~a~%" some-var))
(format t "global-var: ~a~%" some-var)

some-var inner: INTER
some-var outer: OUTER
global-var: GLOBAL

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
50



Artificial 
Intelligence

The let Environment [2]

let*
CL-USER> (let ((a 4)

(a^2 (expt a 2)))
(values a a^2))

The variable A is unbound.

CL-USER> (let* ((a 4)
(a^2 (expt a 2)))

(values a a^2))
4
16

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
51



Artificial 
Intelligence

Lexical Variables

In Lisp, non-global variable values are, when possible, determined at
compile time. They are bound lexically, i.e. they are bound to the
code they’re defined in, not to the run-time state of the program.

Riddle
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
52



Artificial 
Intelligence

Lexical Variables

In Lisp, non-global variable values are, when possible, determined at
compile time. They are bound lexically, i.e. they are bound to the
code they’re defined in, not to the run-time state of the program.

Riddle
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104

This is one single let block, therefore lexical-var is the same every-
where in the block.

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
53



Artificial 
Intelligence

Lexical Variables [2]

Lexical scope with lambda and defun
CL-USER> (defun return-x (x)

(let ((x 304))
x))

(return-x 3)
?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
54



Artificial 
Intelligence

Lexical Variables [2]

Lexical scope with lambda and defun
CL-USER> (defun return-x (x)

(let ((x 304))
x))

(return-x 3)
304

lambda-s and defun-s create lexical local variables per default.

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
55



Artificial 
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104
CL-USER> lexical-var
?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
56



Artificial 
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104
CL-USER> lexical-var
; Evaluation aborted on #<UNBOUND-VARIABLE LEXICAL-VAR {100AA9C403}>.

CL-USER> (let ((another-var 304)
(another-lambda (lambda () (+ another-var 100))))

(setf another-var 4)
(funcall another-lambda))

?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
57



Artificial 
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104
CL-USER> lexical-var
; Evaluation aborted on #<UNBOUND-VARIABLE LEXICAL-VAR {100AA9C403}>.

CL-USER> (let ((another-var 304)
(another-lambda (lambda () (+ another-var 100))))

(setf another-var 4)
(funcall another-lambda))

; caught WARNING:
; undefined variable: ANOTHER-VAR
; Evaluation aborted on #<UNBOUND-VARIABLE ANOTHER-VAR {100AD51473}>.

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
58



Artificial 
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let ((other-lambda (lambda () (+ other-var 100))))

(setf other-var 4)
(funcall other-lambda))

?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
59



Artificial 
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let ((other-lambda (lambda () (+ other-var 100))))

(setf other-var 4)
(funcall other-lambda))

; caught WARNING:
; undefined variable: OTHER-VAR
104
CL-USER> other-var
4
CL-USER> (describe 'other-var)
COMMON-LISP-USER::OTHER-VAR
[symbol]

OTHER-VAR names an undefined variable:
Value: 4

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
60



Artificial 
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let ((some-var 304))

(defun some-fun () (+ some-var 100))
(setf some-var 4)
(funcall #'some-fun))

?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
61



Artificial 
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let ((some-var 304))

(defun some-fun () (+ some-var 100))
(setf some-var 4)
(funcall #'some-fun))

104

;; Alt-. on DEFUN brings you to "defboot.lisp"
(defmacro-mundanely defun (&environment env name args &body body)
(multiple-value-bind (forms decls doc) (parse-body body)

(let* ((lambda-guts `(,args ...))
(lambda `(lambda ,@lambda-guts)) ...

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
62



Artificial 
Intelligence

Lexical Variables [4]

Riddle #2
CL-USER> (let ((lex 'initial-value))

(defun return-lex ()
lex)

(defun return-lex-arg (lex)
(return-lex))

(format t "return-lex: ~a~%"
(return-lex))

(format t "return-lex-arg: ~a~%"
(return-lex-arg 'new-value))

(format t "return-lex again: ~a~%"
(return-lex)))

?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
63



Artificial 
Intelligence

Lexical Variables [4]

Riddle #2
CL-USER> (let ((lex 'initial-value))

(defun return-lex ()
lex)

(defun return-lex-arg (lex)
(return-lex))

(format t "return-lex: ~a~%"
(return-lex))

(format t "return-lex-arg: ~a~%"
(return-lex-arg 'new-value))

(format t "return-lex again: ~a~%"
(return-lex)))

; caught STYLE-WARNING:
; The variable LEX is defined but never used.
return-lex: INITIAL-VALUE
return-lex-arg: INITIAL-VALUE
return-lex again: INITIAL-VALUE

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
64



Artificial 
Intelligence

Dynamic Variables

Riddle #3
CL-USER> (defvar dyn 'initial-value)
CL-USER> (defun return-dyn ()

dyn)
CL-USER> (defun return-dyn-arg (dyn)

(return-dyn))
CL-USER>
(format t "return-dyn: ~a~%"

(return-dyn))
(format t "return-dyn-arg: ~a~%"

(return-dyn-arg 'new-value))
(format t "return-dyn again: ~a~%"

(return-dyn))
?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
65



Artificial 
Intelligence

Dynamic Variables

Riddle #3
CL-USER> (defvar dyn 'initial-value)
CL-USER> (defun return-dyn ()

dyn)
CL-USER> (defun return-dyn-arg (dyn)

(return-dyn))
CL-USER>
(format t "return-dyn: ~a~%"

(return-dyn))
(format t "return-dyn-arg: ~a~%"

(return-dyn-arg 'new-value))
(format t "return-dyn again: ~a~%"

(return-dyn))
return-dyn: INITIAL-VALUE
return-dyn-arg: NEW-VALUE
return-dyn again: INITIAL-VALUE

defvar and defparameter create dynamically-bound variables.
Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
66



Artificial 
Intelligence

Local Function Definitions

flet
CL-USER> (defun some-pseudo-code ()

(flet ((do-something (arg-1)
(format t "doing something ~a now...~%" arg-1)))

(format t "hello.~%")
(do-something "nice")
(format t "hello once again.~%")
(do-something "evil")))

SOME-PSEUDO-CODE
CL-USER> (some-pseudo-code)
hello.
doing something nice now...
hello once again.
doing something evil now...
NIL
CL-USER> (do-something)
; Evaluation aborted on #<UNDEFINED-FUNCTION DO-SOMETHING {101C7A9213}>.

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
67



Artificial 
Intelligence

Local Function Definitions [2]

flet, labels
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(let ((lexical-var 4))

(funcall some-lambda)))
; ?
CL-USER> (let ((lexical-var 304))

(flet ((some-function () (+ lexical-var 100)))
(let ((lexical-var 4))
(some-function))))

; ?

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
68



Artificial 
Intelligence

Local Function Definitions [2]

flet, labels
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(let ((lexical-var 4))

(funcall some-lambda)))
404
CL-USER> (let ((lexical-var 304))

(flet ((some-function () (+ lexical-var 100)))
(let ((lexical-var 4))
(some-function))))

404
CL-USER> (labels ((first-fun () (format t "inside FIRST~%"))

(second-fun ()
(format t "inside SECOND~%")
(first-fun)))

(second-fun))
inside SECOND
inside FIRST

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
69



Artificial 
Intelligence

Contents

Background

Concepts
Functions Basics
Higher-order Functions
Anonymous Functions
Currying
Mapping and Reducing
Lexical Scope

Organizational

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
70



Artificial 
Intelligence

Guidelines

• Avoid global variables! Use for constants.
• If your function generates side-effects, name it correspondingly (either
foo! which is preferred, or foof as in setf, or nfoo as in nconc)

• Use Ctrl-Alt-\ on a selected region to fix indentation
• Try to keep the brackets all together:

This looks weird in Lisp
(if condition
do-this
do-that

)

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
71



Artificial 
Intelligence

Links

• Alexandria documentation:
http://common-lisp.net/project/alexandria/draft/alexandria.html

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
72

http://common-lisp.net/project/alexandria/draft/alexandria.html


Artificial 
Intelligence

Info Summary

• Assignment code: REPO/assignment_4/src/...
• Assignment points: 10 points
• Assignment due: 14.11, Wednesday, 23:59 German time
• Next class: 15.11, 14:15

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
73



Artificial 
Intelligence

Q & A

Thanks for your attention!

Background Concepts Organizational

Gayane Kazhoyan

8th of November, 2018

Robot Programming with Lisp
74


	Background
	Concepts
	Functions Basics
	Higher-order Functions
	Anonymous Functions
	Currying
	Mapping and Reducing
	Lexical Scope

	Organizational

